

Graph Theory
Part Two

Outline for Today

● Walks, Paths, and Reachability
● Walking around a graph.

● Graph Complements
● Flipping what’s in a graph.

● The Pigeonhole Principle
● Everyone finding a place.

Recap from Last Time

Graphs and Digraphs

● A graph is a pair G = (V, E) of a set of
nodes V and set of edges E.
● Nodes can be anything.
● Edges are unordered pairs (i.e., sets with

cardinality 2) of nodes. If {u, v} ∈ E, then
there’s an edge from u to v.

New Stuff!

Walks, Paths, and Reachability

RATSAT

MAT

CAN

SAT RAT

RANMAN

MAT

CAN

Two nodes are called adjacent if there is an edge
between them.

CAT

Using our Formalisms

● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if

they're linked by an edge.
● Formally speaking, we say that two

nodes u, v ∈ V are adjacent if we have
{u, v} ∈ E.

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

From

To

SLC

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SF Sac

Port

Sea

From

To

SF, Sac, Port, SeaSF, Sac, Port, Sea

LA

SD

But

Mon

LV

Bar Flag

Nog

Phoe

SLCSF Sac

Port

Sea

From

To

SF, Sac, SLC, Port, SeaSF, Sac, SLC, Port, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, SeaSF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, SeaSF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, SeaSF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

 SD Nog

Port

SLC

LA

But

Mon

LV

Bar Flag

Phoe

SF Sac

Sea

From

To
A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, SeaSF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea

(This walk has
length 10, but

visits 11 cities.)

(This walk has
length 10, but

visits 11 cities.)

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Question:
Is a “staycation” a

valid walk? In
other words, can a
walk be just “SF”?

Question:
Is a “staycation” a

valid walk? In
other words, can a
walk be just “SF”?

SF Sac

Mon

LV

Bar Flag

LA

SD Nog

Phoe

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

Sea, But, SLC, Port, SeaSea, But, SLC, Port, Sea

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, SacSac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

From/To

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, SacSac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

From/To

(No “staycation”
closed walks, because

of this rule.)

(No “staycation”
closed walks, because

of this rule.)

Flag

SF

SD Nog

Phoe

Sac

Mon

LV

Bar

LA

Port

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SLC

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, SacSac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

(This closed walk has
length nine and visits
nine different cities.)

(This closed walk has
length nine and visits
nine different cities.)

From/To

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SF Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SF

SFSF

Port

Sea But

SLC

Mon

LV

Bar Flag

LA

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

SF, SacSF, Sac

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

Phoe

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

LA

SF, Sac, LASF, Sac, LA

Port

Sea But

SLC

Mon

LV

Bar Flag

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

SF, Sac, LA, PhoeSF, Sac, LA, Phoe

Port

Sea But

SLC

Mon

LV

Bar

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

Flag

SF, Sac, LA, Phoe, FlagSF, Sac, LA, Phoe, Flag

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, BarSF, Sac, LA, Phoe, Flag, Bar

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LASF, Sac, LA, Phoe, Flag, Bar, LA

Port

Sea But

SLC

Mon

LV

SD Nog

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LASF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LASF, Sac, LA, Phoe, Flag, Bar, LA

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LASF, Sac, LA, Phoe, Flag, Bar, LA

(A walk, not a
path.)

(A walk, not a
path.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

SF, Sac, LA, Phoe, Flag, Bar, LASF, Sac, LA, Phoe, Flag, Bar, LA

(This walk has
length six.)

(This walk has
length six.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SacSF

PhoeLA

FlagBar

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

SLC

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac

SacSac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Port

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Sac, SLCSac, SLC

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, PortSac, SLC, Port

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, SacSac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLCSac, SLC, Port, Sac, SLC

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC, PortSac, SLC, Port, Sac, SLC, Port

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

Sac, SLC, Port, Sac, SLC, Port, SacSac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, SacSac, SLC, Port, Sac, SLC, Port, Sac

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, SacSac, SLC, Port, Sac, SLC, Port, Sac

(A closed walk,
not a cycle.)

(A closed walk,
not a cycle.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

Sac, SLC, Port, Sac, SLC, Port, SacSac, SLC, Port, Sac, SLC, Port, Sac

(This closed
walk has length

6.)

(This closed
walk has length

6.)

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

The length of the walk v₁, …, vₙ
is n – 1.

The length of the walk v₁, …, vₙ
is n – 1.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the
first/last node.

What is the length
of the longest

walk in this graph?
Path in this graph?

Closed walk?
Cycle?

What is the length
of the longest

walk in this graph?
Path in this graph?

Closed walk?
Cycle?

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

A node v is reachable from a
node u if there is a path from u
to v.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port
From

To

(Barstow isn’t
reachable from SF
after these road

closures.)

(Barstow isn’t
reachable from SF
after these road

closures.)

A node v is reachable from a
node u if there is a path from u
to v.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

(This graph is not
connected.)

(This graph is not
connected.)

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

A walk in a graph G = (V, E) is
a sequence of one or more
nodes v₁, v₂, v₃, …, vₙ such that
any two consecutive nodes in
the sequence are adjacent.

Sea But

Mon

LV

SD Nog

SF

PhoeLA

FlagBar

Sac SLC

Port

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A graph G is called connected
if all pairs of distinct nodes in
G are reachable.

A node v is reachable from a
node u if there is a path from u
to v.

A node v is reachable from a
node u if there is a path from u
to v.

A path in a graph is walk that
does not repeat any nodes.

A path in a graph is walk that
does not repeat any nodes.

A connected component (or
CC) of G is a maximal set of
mutually reachable nodes.

A connected component (or
CC) of G is a maximal set of
mutually reachable nodes.

Fun Facts

● Here’s a collection of useful facts about graphs that
you can take as a given.
● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is

a path from u to v if and only if there’s a walk from u to v.
● Theorem: If G is a graph and C is a cycle in G, then C’s

length is at least three and C contains at least three nodes.
● Theorem: If G = (V, E) is a graph, then every node in V

belongs to exactly one connected component of G.
● Theorem: If G = (V, E) is a graph, then G is connected if

and only if G has exactly one connected component.
● Looking for more practice working with formal

definitions? Prove these results!

Graph Complements

Let G = (V, E) be an undirected graph.
The complement of G is the graph Gc = (V, Ec), where

Ec = { {u, v} | u ∈ V, v ∈ V, u ≠ v, and {u, v} ∉ E }

≈

⬠☜

꩜ ≈

⬠☜

꩜

Graph G Graph Gc

Theorem: For any graph G = (V, E),
at least one of G and Gc is connected.

Proving a Disjunction

● We need to prove the statement

G is connected ∨ Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove

that Gc is connected.
● We will therefore prove

G is not connected → Gc is connected.

For any graph G = (V, E),
at least one of G and Gc is connected.

Proving a Disjunction

● We need to prove the statement

G is connected ∨ Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove

that Gc is connected.
● We will therefore prove

G is not connected → Gc is connected.

For any graph G = (V, E),
if G is not connected, then Gc is connected.

For any graph G = (V, E),
if G is not connected, then Gc is connected.

≈

⬠☜

꩜ +

○△

★

For any graph G = (V, E),
if G is not connected, then Gc is connected.

≈

☜

꩜ +

○

★

⬠ △

⬠

For any graph G = (V, E),
if G is not connected, then Gc is connected.

☜

꩜ +

○

★

△

≈

For any graph G = (V, E),
if G is not connected, then Gc is connected.

☜

꩜ +

○

★≈

⬠ △

○

+★

For any graph G = (V, E),
if G is not connected, then Gc is connected.

☜

꩜ ≈

⬠ △

For any graph G = (V, E),
if G is not connected, then Gc is connected.

≈

⬠☜

꩜ +

○△

★

Any two nodes in G in
different CC’s of G

become adjacent in Gc.

Any two nodes in G in
the same CC can be

“bridged” in Gc through
a node in a different CC

of G.

Any two nodes in G in
different CC’s of G

become adjacent in Gc.

Any two nodes in G in
the same CC can be

“bridged” in Gc through
a node in a different CC

of G.

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there is at least one node that is not
connected to u or v—pick one such node and call it z. Then by the
reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there is at least one node that is not
connected to u or v—pick one such node and call it z. Then by the
reasoning from Case 1, we know that {u, z} ∈ Ec and {z, v} ∈ Ec.
This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there is at least one node that is not
connected to u or v—pick one such node and call it z. Then by the
reasoning from Case 1, we know that {u, z} ∈ Ec and {z, v} ∈ Ec.
This gives a path u, z, v in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there is at least one node that is not
connected to u or v—pick one such node and call it z. Then by the
reasoning from Case 1, we know that {u, z} ∈ Ec and {z, v} ∈ Ec.
This gives a path u, z, v in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■

The Pigeonhole Principle

The Pigeonhole Principle

● Theorem (The Pigeonhole Principle):
If m objects are distributed into n bins
and m > n, then at least one bin will
contain at least two objects.

The Pigeonhole Principle

● Theorem (The Pigeonhole Principle):
If m objects are distributed into n bins
and m > n, then at least one bin will
contain at least two objects.

The Pigeonhole Principle

● Theorem (The Pigeonhole Principle):
If m objects are distributed into n bins
and m > n, then at least one bin will
contain at least two objects.

The Pigeonhole Principle

● Theorem (The Pigeonhole Principle):
If m objects are distributed into n bins
and m > n, then at least one bin will
contain at least two objects.

m = 4, n = 3

Thanks to Amy Liu for this awesome drawing!

Some Simple Applications
● Any group of 367 people must have a pair of

people that share a birthday.
● 366 possible birthdays (pigeonholes).
● 367 people (pigeons).

● Two people in San Francisco have the exact
same number of hairs on their head.
● Maximum number of hairs ever found on a

human head is no greater than 500,000.
● There are over 800,000 people in San Francisco.

Theorem (The Pigeonhole Principle): If m
objects are distributed into n bins and m > n, then at

least one bin will contain at least two objects.

Theorem (The Pigeonhole Principle): If m
objects are distributed into n bins and m > n, then at

least one bin will contain at least two objects.

Let A and B be finite sets (sets whose cardinalities are natural
numbers) and assume |A| > |B|. How many of the following

statements are true?

(1) If f : A → B, then f is injective.
(2) If f : A → B, then f is not injective.
(3) If f : A → B, then f is surjective.
(4) If f : A → B, then f is not surjective.

Proving the Pigeonhole Principle

Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of
objects in bin i. There are m objects in total, so we know that

 m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for
each i. This means that

 m = x₁ + x₂ + … + xₙ
≤ 1 + 1 + … + 1 (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve
reached a contradiction, so our assumption must have been
wrong. Therefore, if m objects are distributed into n bins with
m > n, some bin must contain at least two objects. ■

Pigeonhole Principle Party Tricks

Degrees

● The degree of a node v in a graph is the
number of nodes that v is adjacent to.

● Theorem: Every graph with at least two
nodes has at least two nodes with the same
degree.
● Equivalently: at any party with at least two

people, there are at least two people with the
same number of friends at the party.

1

2 1

 0
 3

3 3

 3

A

B C

D

EF

0 1 2 3 4 5

AB C
D

E

F

0 1 2 3 4 5

A

B C

D

EF

0 1 2 3 4 5

A

B C

D

EF

With n nodes, there
are n possible

degrees
(0, 1, 2, …, n – 1)

With n nodes, there
are n possible

degrees
(0, 1, 2, …, n – 1)

0 1 2 3 4 5

A

B C

D

EF

0 1 2 3 4 5

A

B C

D

EF
Can both of

these buckets
be nonempty?

Can both of
these buckets
be nonempty?

1 2 3 4 0 / 5

A

B C

D

EF

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be different nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■

Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This first node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption
must have been wrong. Thus if G is a graph with at
least two nodes, G must have at least two nodes of the
same degree. ■

The Generalized Pigeonhole Principle

The Pigeonhole Principle

The Pigeonhole Principle

? ? ? ?

?

?

The Pigeonhole Principle

The Pigeonhole Principle

The Pigeonhole Principle

The Pigeonhole Principle

11

5
= 2

1

5

A More General Version
● The generalized pigeonhole principle says

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

A More General Version
● The generalized pigeonhole principle says

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

A More General Version
● The generalized pigeonhole principle says

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

m = 8, n = 3

Thanks to Amy Liu for this awesome drawing!

Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m and
n, there is a way to distribute m objects into n bins such that each bin
contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects
in bin i. Since there are m objects in total, we know that

 m = x₁ + x₂ + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

 m = x₁ + x₂ + … + xₙ
< m/ₙ + m/ₙ + … + m/ₙ (n times)
= m.

But this means that m < m, which is impossible. We have reached a
contradiction, so our initial assumption must have been wrong.
Therefore, if m objects are distributed into n bins, some bin must
contain at least ⌈m/ₙ⌉ objects. ■

An Application: Friends and Strangers

Friends and Strangers

● Suppose you have a party of six people.
Each pair of people are either friends
(they know each other) or strangers (they
do not).

● Theorem: Any such party must have a
group of three mutual friends (three
people who all know one another) or three
mutual strangers (three people, none of
whom know any of the others).

This graph is called a
6-clique, by the way.

This graph is called a
6-clique, by the way.

Friends and Strangers Restated

● From a graph-theoretic perspective, the
Theorem on Friends and Strangers can
be restated as follows:

Theorem: Any 6-clique whose edges are
colored red and blue contains a red
triangle or a blue triangle (or both).

● How can we prove this?

Observation 1: If
we pick any node in
the graph, that node

will have at least
⌈5/2⌉ = 3 edges of

the same color
incident to it.

Observation 1: If
we pick any node in
the graph, that node

will have at least
⌈5/2⌉ = 3 edges of

the same color
incident to it.

Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: We need to show that the colored 6-clique contains a
red triangle or a blue triangle.

Let x be any node in the 6-clique. It is incident to five
edges and there are two possible colors for those edges.
Therefore, by the generalized pigeonhole principle, at
least ⌈⁵/₂⌉ = 3 of those edges must be the same color.
Without loss of generality, assume those edges are blue.

Let r, s, and t be three of the nodes adjacent to node x
along a blue edge. If any of the edges {r, s}, {r, t}, or {s,
t} are blue, then one of those edges plus the two edges
connecting back to node x form a blue triangle. Otherwise,
all three of those edges are red, and they form a red
triangle. Overall, this gives a red triangle or a blue
triangle, as required. ■

Ramsey Theory

● The theorem we just proved is a special case of a
broader result.

● Theorem (Ramsey’s Theorem): For any natural
number n, there is a number R(n) where for any
clique with R(n) or more nodes that’s painted red
or blue, that clique has either a red n-clique or a
blue n-clique, and for all cliques with fewer than
R(n) nodes, there’s a way to paint it red and blue so
it has no red n-cliques and no blue n-cliques.
● Our proof was that R(3) ≤ 6.

● A more philosophical take on this theorem: true disorder
is impossible at a large scale, since no matter how you
organize things, you’re guaranteed to find some
interesting substructure.

Going Further

● The pigeonhole principle can be used to prove a ton of
amazing theorems. Here’s a sampler:
● There is always a way to fairly split rent among multiple people,

even if different people want different rooms. (Sperner’s lemma)
● You and a friend can climb any mountain from two different

starting points so that the two of you maintain the same altitude
at each point in time. (Mountain-climbing theorem)

● If you model coffee in a cup as a collection of infinitely many
points and then stir the coffee, some point is always where it
initially started. (Brower’s fixed-point theorem)

● A complex process that doesn’t parallelize well must contain a
large serial subprocess. (Mirksy’s theorem)

● Any positive integer n has a nonzero multiple that can be written
purely using the digits 1 and 0. (Doesn’t have a name, but still
cool!)

More to Explore

● Interested in more about graphs and the pigeonhole
principle? Check out…
● … Math 107 (Graph Theory), a deep dive into graph

theory.
● … Math 108 (Combinatorics), which explores a bunch of

results pertaining to graphs and counting things.
● … CS161 (Algorithms), which explores algorithms for

computing important properties of graphs.
● … CS224W (Deep Learning on Graphs), which uses a mix

of mathematical and statistical techniques to explore
graphs.

Next Time

● Mathematical Induction
– Reasoning about stepwise processes!

● Applications of Induction
– To numbers!
– To anticounterfeiting!
– To puzzles!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164

