
  

Graph Theory
Part Two



  

Outline for Today

● Walks, Paths, and Reachability
● Walking around a graph.

● Graph Complements
● Flipping what’s in a graph.

● The Pigeonhole Principle
● Everyone finding a place.



  

Recap from Last Time



  

Graphs and Digraphs

● A graph is a pair G = (V, E) of a set of 
nodes V and set of edges E.
● Nodes can be anything.
● Edges are unordered pairs (i.e., sets with 

cardinality 2) of nodes. If {u, v} ∈ E, then 
there’s an edge from u to v.



  

New Stuff!
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Two nodes are called adjacent if there is an edge 
between them.
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Using our Formalisms

● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if 

they're linked by an edge.
● Formally speaking, we say that two 

nodes u, v ∈ V are adjacent if we have 
{u, v} ∈ E.
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Fun Facts

● Here’s a collection of useful facts about graphs that 
you can take as a given.
● Theorem: If G = (V, E) is a graph and u, v ∈ V, then there is 

a path from u to v if and only if there’s a walk from u to v.
● Theorem: If G is a graph and C is a cycle in G, then C’s 

length is at least three and C contains at least three nodes.
● Theorem: If G = (V, E) is a graph, then every node in V 

belongs to exactly one connected component of G.
● Theorem: If G = (V, E) is a graph, then G is connected if 

and only if G has exactly one connected component.
● Looking for more practice working with formal 

definitions? Prove these results!



  

Graph Complements



  

Let G = (V, E) be an undirected graph.
The complement of G is the graph Gc = (V, Ec), where

Ec = { {u, v} | u ∈ V, v ∈ V, u ≠ v, and {u, v} ∉ E }

≈

⬠☜

꩜ ≈

⬠☜

꩜

Graph G Graph Gc



  

Theorem: For any graph G = (V, E),
at least one of G and Gc is connected.



  

Proving a Disjunction

● We need to prove the statement

G is connected    ∨    Gc is connected.
● Here’s a neat observation.

● If G is connected, we’re done.
● Otherwise, G isn’t connected, and we have to prove 

that Gc is connected.
● We will therefore prove

G is not connected    →    Gc is connected.

For any graph G = (V, E),
at least one of G and Gc is connected.
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● Otherwise, G isn’t connected, and we have to prove 
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● We will therefore prove

G is not connected    →    Gc is connected.

For any graph G = (V, E),
if G is not connected, then Gc is connected.



  

For any graph G = (V, E),
if G is not connected, then Gc is connected.
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For any graph G = (V, E),
if G is not connected, then Gc is connected.
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For any graph G = (V, E),
if G is not connected, then Gc is connected.
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For any graph G = (V, E),
if G is not connected, then Gc is connected.

≈

⬠☜

꩜ +

○△

★

Any two nodes in G in 
different CC’s of G 

become adjacent in Gc.

Any two nodes in G in 
the same CC can be 

“bridged” in Gc through 
a node in a different CC 

of G.

Any two nodes in G in 
different CC’s of G 

become adjacent in Gc.

Any two nodes in G in 
the same CC can be 

“bridged” in Gc through 
a node in a different CC 

of G.



  

Theorem: If G = (V, E) is a graph, then at least one of G and Gc is
connected.

Proof: Let G = (V, E) be an arbitrary graph and assume G is not
connected. We need to show that Gc = (V, Ec) is connected. To
do so, consider any two distinct nodes u, v ∈ V. We need to show
that there is a path from u to v in Gc. We consider two cases:

Case 1: u and v are in different connected components of G. This
means that {u, v} ∉ E, since otherwise the path u, v would make
u reachable from v and they’d be in the same connected
component of G. Therefore, we see that {u, v} ∈ Ec, and so there
is a path (namely, u, v) from u to v in Gc.

Case 2: u and v are in the same connected component of G. Since
G is not connected, there are at least two connected components
of G. Pick any node z that belongs to a different connected
component of G than u and v. Then by the reasoning from Case 1
we know that {u, z} ∈ Ec and {z, v} ∈ Ec. This gives a path u, z, v
in Gc from u to v.

In either case, we find a path from u to v in Gc, as required. ■
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The Pigeonhole Principle

● Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins 
and m > n, then at least one bin will 
contain at least two objects.
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m = 4, n = 3

Thanks to Amy Liu for this awesome drawing!



  

Some Simple Applications
● Any group of 367 people must have a pair of 

people that share a birthday.
● 366 possible birthdays (pigeonholes).
● 367 people (pigeons).

● Two people in San Francisco have the exact 
same number of hairs on their head.
● Maximum number of hairs ever found on a 

human head is no greater than 500,000.
● There are over 800,000 people in San Francisco.



  

Theorem (The Pigeonhole Principle): If m 
objects are distributed into n bins and m > n, then at 

least one bin will contain at least two objects.

Theorem (The Pigeonhole Principle): If m 
objects are distributed into n bins and m > n, then at 

least one bin will contain at least two objects.

Let A and B be finite sets (sets whose cardinalities are natural
numbers) and assume |A| > |B|. How many of the following

statements are true?

(1) If f : A → B, then f is injective.
(2) If f : A → B, then f is not injective.
(3) If f : A → B, then f is surjective.
(4) If f : A → B, then f is not surjective.



  

Proving the Pigeonhole Principle



  

Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of 
objects in bin i. There are m objects in total, so we know that

  m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for 
each i. This means that

  m = x₁ + x₂ + … + xₙ
≤ 1  +  1 + … + 1   (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve 
reached a contradiction, so our assumption must have been 
wrong. Therefore, if m objects are distributed into n bins with 
m > n, some bin must contain at least two objects. ■



  

Pigeonhole Principle Party Tricks



  



  



  



  

Degrees

● The degree of a node v in a graph is the 
number of nodes that v is adjacent to.

 

● Theorem: Every graph with at least two 
nodes has at least two nodes with the same 
degree.
● Equivalently: at any party with at least two 

people, there are at least two people with the 
same number of friends at the party.
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of 
degree 0 and a node v of degree n – 1: if there were such 
nodes, then node u would be adjacent to no other nodes 
and node v would be adjacent to all other nodes, 
including u. (Note that u and v must be different nodes, 
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of 
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1 
possible degrees, so by the pigeonhole principle two 
nodes in G must have the same degree. ■
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This first node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption 
must have been wrong. Thus if G is a graph with at 
least two nodes, G must have at least two nodes of the 
same degree. ■
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A More General Version
● The generalized pigeonhole principle says 

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”
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m = 8, n = 3

Thanks to Amy Liu for this awesome drawing!



  

Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m and 
n, there is a way to distribute m objects into n bins such that each bin 
contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects 
in bin i. Since there are m objects in total, we know that

  m = x₁  +  x₂  + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

  m = x₁  +  x₂  + … + xₙ
< m/ₙ + m/ₙ  + … + m/ₙ  (n times)
= m.

But this means that m < m, which is impossible. We have reached a 
contradiction, so our initial assumption must have been wrong. 
Therefore, if m objects are distributed into n bins, some bin must 
contain at least ⌈m/ₙ⌉ objects. ■



  

An Application: Friends and Strangers



  

Friends and Strangers

● Suppose you have a party of six people. 
Each pair of people are either friends 
(they know each other) or strangers (they 
do not).

● Theorem: Any such party must have a 
group of three mutual friends (three 
people who all know one another) or three 
mutual strangers (three people, none of 
whom know any of the others).



  



  



  



  



  



  



  

This graph is called a 
6-clique, by the way.

This graph is called a 
6-clique, by the way.



  



  



  



  



  

Friends and Strangers Restated

● From a graph-theoretic perspective, the 
Theorem on Friends and Strangers can 
be restated as follows:

Theorem: Any 6-clique whose edges are 
colored red and blue contains a red 
triangle or a blue triangle (or both).

● How can we prove this?



  



  



  



  



  



  



  

Observation 1: If 
we pick any node in 
the graph, that node 

will have at least 
⌈5/2⌉ = 3 edges of 

the same color 
incident to it.
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Theorem: Consider a 6-clique in which every edge is colored
either red or blue. Then there must be a triangle of red
edges, a triangle of blue edges, or both.

Proof: We need to show that the colored 6-clique contains a
red triangle or a blue triangle.

Let x be any node in the 6-clique. It is incident to five 
edges and there are two possible colors for those edges. 
Therefore, by the generalized pigeonhole principle, at 
least ⌈⁵/₂⌉ = 3 of those edges must be the same color. 
Without loss of generality, assume those edges are blue.

Let r, s, and t be three of the nodes adjacent to node x 
along a blue edge. If any of the edges {r, s}, {r, t}, or {s, 
t} are blue, then one of those edges plus the two edges 
connecting back to node x form a blue triangle. Otherwise, 
all three of those edges are red, and they form a red 
triangle. Overall, this gives a red triangle or a blue 
triangle, as required. ■



  

Ramsey Theory

● The theorem we just proved is a special case of a 
broader result.

● Theorem (Ramsey’s Theorem): For any natural 
number n, there is a number R(n) where for any 
clique with R(n) or more nodes that’s painted red 
or blue, that clique has either a red n-clique or a 
blue n-clique, and for all cliques with fewer than 
R(n) nodes, there’s a way to paint it red and blue so 
it has no red n-cliques and no blue n-cliques.
● Our proof was that R(3) ≤ 6.

● A more philosophical take on this theorem: true disorder 
is impossible at a large scale, since no matter how you 
organize things, you’re guaranteed to find some 
interesting substructure.



  

Going Further

● The pigeonhole principle can be used to prove a ton of 
amazing theorems. Here’s a sampler:
● There is always a way to fairly split rent among multiple people, 

even if different people want different rooms. (Sperner’s lemma)
● You and a friend can climb any mountain from two different 

starting points so that the two of you maintain the same altitude 
at each point in time. (Mountain-climbing theorem)

● If you model coffee in a cup as a collection of infinitely many 
points and then stir the coffee, some point is always where it 
initially started. (Brower’s fixed-point theorem)

● A complex process that doesn’t parallelize well must contain a 
large serial subprocess. (Mirksy’s theorem)

● Any positive integer n has a nonzero multiple that can be written 
purely using the digits 1 and 0. (Doesn’t have a name, but still 
cool!)



  

More to Explore

● Interested in more about graphs and the pigeonhole 
principle? Check out…
● … Math 107 (Graph Theory), a deep dive into graph 

theory.
● … Math 108 (Combinatorics), which explores a bunch of 

results pertaining to graphs and counting things.
● … CS161 (Algorithms), which explores algorithms for 

computing important properties of graphs.
● … CS224W (Deep Learning on Graphs), which uses a mix 

of mathematical and statistical techniques to explore 
graphs.



  

Next Time

● Mathematical Induction
– Reasoning about stepwise processes!

● Applications of Induction
– To numbers!
– To anticounterfeiting!
– To puzzles!
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